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Abstract
The relation between the uniformizing equation of the complex hyperbolic
structure on the moduli space of marked cubic surfaces and an Appell–
Lauricella hypergeometric system in nine variables is clarified.

PACS number: 0230

1. Introduction

In the previous paper [3] we found the uniformizing equation which governs the developing map
of the complex hyperbolic structure on the (four-dimensional) moduli space of marked cubic
surfaces. Our equation is invariant under the action of the Weyl group of type E6. Terasoma
and Matsumoto are establishing a theory implying that the variation of Hodge structure of
the cubic surfaces is essentially equivalent to that of a certain family of curves which are
cyclic covers of the line branching at 12 points [2]. This theory suggests that our uniformizing
equation should be equivalent to a restriction of the Appell–Lauricella hypergeometric system
FD in nine variables. In this paper, we carry out the computation and prove this observation.

2. Configuration spaces X(2, N )

Let X(2, N) be the configuration space of N (coloured) points on the projective line P1 defined
as

X(2, N) = P GL2\{(x1, . . . , xN ) ∈ (P1)N |xi �= xj (i �= j)}.
By normalizing three points as 0, 1, ∞, the space X(2, N) can be identified with the open
affine set

n∏
j=1

xj (1 − xj )
∏

1�i<j�n

(xi − xj ) �= 0

in the affine space coordinatized by (x1, . . . , xn), where n + 3 = N . On this configuration
space lives the Appell–Lauricella hypergeometric system ED , which we review in the next
section. When n = 1, X(2, 4) is isomorphic to C − {0, 1}.
0305-4470/01/112319+10$30.00 © 2001 IOP Publishing Ltd Printed in the UK 2319
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3. Appell–Lauricella hypergeometric system ED

For coordinates x1, . . . , xn, put Di := xi∂/∂xi . The system

DiDj u =
n∑

k=1

pk
ij Dku + p0

ij u (i, j = 1, . . . , n)

with parameters (a, b, c) = (a, b1, . . . , bn, c), where

pk
ij = pk

ji p0
ij = p0

ji 1 � i, j, k � n p0
ij pk

ij = 0 i �= j �= k �= i

pi
ij = bj

xj

xi − xj

i �= j p0
ii = abi

xi

1 − xi

pk
ii = bi

(
xi

1 − xi

− xi

xk − xi

)
i �= k

pi
ii = −

∑
k �=i

bk

xk

xi − xk

+
(a + bi)xi − c + 1

1 − xi

is called the Appell–Lauricella hypergeometric system of type D and is denoted by
En

D(a, b1, . . . , bn, c). The Appell–Lauricella hypergeometric series

FD(a; b1, . . . , bn; c|x1, . . . , xn)

=
∞∑

m1,...,mn=0

(a, m1 + · · · + mn)(b1, m1) · · · (bn, mn)

(c, m1 + · · · + mn)m1! · · · mn!
(x1)m1 · · · (xn)mn

where (a, m) = a(a + 1) · · · (a + m − 1), solves this system around the origin [1, 4]. This
system has singularities along the divisor defined by

n∏
j=1

xj (1 − xj )
∏

1�i<j�n

(xi − xj ) = 0

and at infinity, that is, this system is regular in the configuration space X(2, n + 3). The rank
(the dimension of the space of local solutions at a (any) regular point) is n + 1. When n = 1,
E1

D(a, b, c) is the Gauss hypergeometric equation.
Note in general that if a system of the above form is of rank n + 1 then the coefficients p0

ij

can be expressed in terms of pr
pq (1 � p, q, r � n) and their derivatives; so we often describe

a system by presenting pk
ij only.

4. The pull-back of ED under an embedding of X(2, n + 3) into X(2, 2n + 4)

Let us embed (a Zariski open subset of) the space X(2, n + 3) into X(2, 2n + 4) as

ι : X(2, n + 3) � (0, ∞, 1, x1, . . . , xn)

−→ (0, ∞, 1, x1, . . . , xn, −x1, . . . , −xn, −1) ∈ X(2, 2n + 4).

The space X(2, 2n + 4) is of dimension 2n + 1 and the Appell–Lauricella hypergeometric
system E2n+1

D is of rank 2n + 2.
For a solution u = u(x1, . . . , x2n+1) of E2n+1

D = E2n+1
D (a, b1, . . . , b2n+1, c), put

v(x1, . . . , xn) := u(x1, . . . , xn, −x1, . . . , −xn, −1).
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For generic parameters (a, b, c), the system satisfied by the pull-back v of u under ι would be
of rank 2n + 2. We study whether the rank of this system may be of rank n + 1. We have

Div = (Di + Di+n)u 1 � i � n

DiDj v = (DiDj + DiDj+n + Di+nDj + Di+nDj+n)u

=
2n+1∑
k=0

(pk
i,j + pk

i,j+n + pk
i+n,j + pk

i+n,j+n)Dku

where D0u := u, and the right-hand sides denote the values restricted to

xn+1 = −x1, . . . , x2n = −xn x2n+1 = −1.

For 1 � i �= j � n, we have

DiDj v =
2n∑

k=1

(pk
i,j + pk

i,j+n + pk
i+n,j + pk

i+n,j+n)Dku

= (pi
i,j + pi

i,j+n)Diu + (pi+n
i+n,j + pi+n

i+n,j+n)Di+nu

+(p
j

i,j + p
j

i+n,j )Dj u + (p
j+n

i,j+n + p
j+n

i+n,j+n)Dj+nu

and

pi
i,j + pi

i,j+n = bj

xj

xi − xj

+ bj+n

xj+n

xi − xj+n

= bj

xj

xi − xj

+ bj+n

−xj

xi + xj

pi+n
i+n,j + pi+n

i+n,j+n = bj

xj

xi+n − xj

+ bj+n

xj+n

xi+n − xj+n

= bj

xj

−xi − xj

+ bj+n

−xj

−xi + xj

.

When i = j , we have

D2
i v =

2n+1∑
k=0

(pk
i,i + 2pk

i,i+n + pk
i+n,i+n)Dku

= (pi
i,i + 2pi

i,i+n + pi
i+n,i+n)Diu + (pi+n

i,i + 2pi+n
i,i+n + pi+n

i+n,i+n)Di+nu

+
∑

1�k �=i�n

[
(pk

i,i + pk
i+n,i+n)Dku + (pk+n

i,i + pk+n
i+n,i+n)Dk+nu

]

+(p2n+1
i,i + p2n+1

i+n,i+n)D2n+1u + (p0
i,i + p0

i+n,i+n)u

and

p2n+1
i,i = bi

(
xi

1 − xi

− xi

x2n+1 − xi

)
= bi

(
xi

1 − xi

− xi

−1 − xi

)

p2n+1
i+n,i+n = bi+n

(
xi+n

1 − xi+n

− xi+n

x2n+1 − xi+n

)
= bi+n

( −xi

1 + xi

− −xi

−1 + xi

)

pk
i,i + pk

i+n,i+n = bi

(
xi

1 − xi

− xi

xk − xi

)
+ bi+n

( −xi

1 + xi

− −xi

xk + xi

)

pk+n
i,i + pk+n

i+n,i+n = bi

(
xi

1 − xi

− xi

−xk − xi

)
+ bi+n

( −xi

1 + xi

− −xi

−xk + xi

)

pi
i,i + 2pi

i,i+n + pi
i+n,i+n = −

∑
1�k �=i�2n+1

bk

xk

xi − xk

+
1

1 − xi

{(a + bi)xi − c + 1}
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+2bi+n

xi+n

xi − xi+n

+ bi+n

(
xi+n

1 − xi+n

− xi+n

xi − xi+n

)

= −
∑

1�k �=i�n

(
bk

xk

xi − xk

+ bk+n

−xk

xi + xk

)

+
(a + bi + bi+n)x2

i + (a − c − b2n+1 + 1 + bi − bi+n)xi + b2n+1 − c + 1

(1 − xi)(1 + xi)

pi+n
i,i + 2pi+n

i,i+n + pi+n
i+n,i+n = b1

{
xi

1 − xi

− xi

−xi − xi

}
+ 2bi

xi

−xi − xi

+
1

1 + xi

{
(a + bi+n)(−xi) − c + 1

−1

xi

}
−

∑
1�k �=i+n�2n+1

bk

xk

xi+n − xk

= −
∑

1�k �=i�n

(
bk

xk

−xi − xk

+ bk+n

−xk

−xi + xk

)

+
(a + bi + bi+n)x2

i + (−a + c + b2n+1 − 1 + bi − bi+n)xi + b2n+1 − c + 1

(1 − xi)(1 + xi)
.

In order for the system for v to be of rank n + 1, DiDj v must be linearly related to Dkv and
v. We have

p2n+1
i,i + p2n+1

i+n,i+n = 0 and pk
i,j + pk

i+n,j+n = pk+n
i,j + pk+n

i+n,j+n (1 � i, j � n)

if and only if bi = bi+n (1 � i � n). Assuming these, we have

pi
i,i + 2pi

i,i+n + pi
i+n,i+n = pi+n

i,i + 2pi+n
i,i+n + pi+n

i+n,i+n (1 � i � n)

if and only if a − c − b2n+1 + 1 = 0.

Proposition 1. The pull-back, under the embedding ι : X(2, n + 3) → X(2, 2n + 4) of a (any)
non-zero solution of the hypergeometic system E2n+1

D (a, b1, . . . , b2n+1, c) satisfies a system of
rank n + 1 if and only if

bi = bi+n (1 � i � n) and a − c − b2n+1 + 1 = 0.

This system of rank n + 1 on X(2, n + 3), which will be called E(a, b1, . . . , bn, c), is given by

DiDj v =
n∑

k=1

qk
ij Dkv + q0

ij v (1 � i, j � n)

with parameters (a, b1, . . . , bn, c), where

qk
ij = qk

ji q0
ij = q0

ji 1 � i, j, k � n q0
ij = qk

ij = 0 i �= j �= k �= i

qi
ij = pi

i,j + pi
i,j+n = 2bj

x2
j

x2
i − x2

j

i �= j

q0
ii = p0

i,i + p0
i+n,i+n = a(2bi)

x2
i

1 − x2
i

qk
ii = pk

i,i + pk
i+n,i+n = 2bi

(
x2

i

1 − x2
i

− x2
i

x2
k − x2

i

)
i �= k

qi
ii = pi

i,i + 2pi
i,i+n + pi

i+n,i+n = −
∑
k �=i

2bk

x2
k

x2
i − x2

k

+
(a + 2bi)x

2
i + a − 2c + 2

1 − x2
i

.
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The system has regular singularities along

n∏
i=1

xi(1 − xi)(1 + xi)
∏

1�i<j�n

(xi − xj )(xi + xj ) = 0

and at infinity.

Rewriting this system in the form ∂2v/∂xi∂xj = · · · , we find

Corollary 1. This system is non-singular along {xi = 0} if and only if

(qi
ii |xi=0 =) 2

∑
1�k( �=i)�n

bk + a − 2c + 2 = 0.

We need not check that this system is of rank n + 1, because of the following fact. Note that if
we introduce the variables yj = x2

j , then we have

Dx
j = 2D

y

j where Dx
j = xj ∂/∂xj D

y

j = yj ∂/∂yj .

Comparing the coefficients of E(a, b, c) and those of En
D(a, b, c), we have

Corollary 2. The Appell–Lauricella system En
D(a/2, b1, . . . , bn, c − a/2) in y-variables is

transformed into E(a, b, c) in x-variables by the change yj = x2
j .

Remark 1. The following integral representation of a solution of E2n+1
D (a, b, c)∫

ta−1(1 − t)c−a−1(1 − x1)−b1 · · · (1 − x2n)−b2n (1 − x2n+1)−b2n+1 dt

supports proposition 1 and corollary 2.

5. Systems invariant under the involution #

Consider the involution

# : (x1, . . . , xn) −→ (1/x1, . . . 1/xn)

on X(2, n + 3) and let # take the system E(a, b, c) = En
D(a, b1, . . . , bn, c) into a system

#E(a, b, c) : DiDj u =
n∑

k=1

πk
ij Dku + π0

ij u (1 � i, j � n).

Since the change of variables xi → 1/xi induces the change of the derivations Di → −Di ,
we can easily see the coefficients

πk
ij = πk

ji π0
ij = π0

ji 1 � i, j, k � n π0
ij = πk

ij = 0 i �= j �= k �= i

πi
ij = bj

xi

xi − xj

i �= j π0
ii = abi

1

1 − xi

πk
ii = bi

(
1

1 − xi

− xk

xk − xi

)
i �= k

πi
ii = −

∑
k �=i

bk

xi

xi − xk

+
(−c + 1)xi + a + bi

1 − xi

.

In particular, E(a, b, c) is not invariant under the involution # for any choice of parameters
not simultaneously zero.



2324 T Sasaki and M Yoshida

Let us transform the systems E and #E into the normal forms defined below. We change
the unknown v of the system E(a, b, c) as v = ρw, where ρ is a non-zero function. If we
write the new system as

N E(a, b, c) : DiDj w =
n∑

k=1

P k
ij Dkw + P 0

ij w (1 � i, j � n)

then the coefficients P k
ij are given by

P k
ij = pk

ij − Diρ

ρ
δk

j − Dj ρ

ρ
δk

i

where δ denotes the Kronecker symbol. Now choose ρ so that the system N E is of normal
form, which means by definition,

n∑
k=1

P k
kj = 0 (1 � j � n)

that is,
n∑

k=1

pk
kj − (n + 1)

Dj ρ

ρ
= 0 (1 � j � n)

it is known that if the given system E is integrable then there is a non-zero function ρ solving
the above first-order system of differential equations. Thus we have

P k
ij = pk

ij − δk
j

n + 1
pi − δk

i

n + 1
pj

where

pj =
n∑

k=1

pk
kj =

∑
k �=j

pk
kj + p

j

jj =
∑
k �=j

bj xj + bkxk

xk − xj

+
(a + bj )xj − c + 1

1 − xj

.

The coefficients of the normal form N E(a, b, c) are given by

P k
ii = pk

ii = bixi(xk − 1)

(1 − xi)(xk − xi)
i �= k

P i
ij = pi

ij − pj

n + 1
= bj xj

xi − xj

− pj

n + 1
i �= j

P i
ii = pi

ii − 2
pj

n + 1
.

We next find the normal form

N#E(a, b, c) : DiDj w =
n∑

k=1

%k
ij Dkw + %0

ij w (1 � i, j � n)

of #E(a, b, c). Its coefficients are given by

%k
ij = πk

ij − δk
j

n + 1
πi − δk

i

n + 1
πj

where

πj =
n∑

k=1

πk
kj =

∑
k �=j

πk
kj + π

j

jj =
∑
k �=j

bj xk + bkxj

xk − xj

+
(−c + 1)xj + a + bj

1 − xj

.
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Thus we have

%k
ii = πk

ii = bixi(xk − 1)

(1 − xi)(xk − xi)
i �= k

%i
ij = πi

ij − πj

n + 1
= bj xi

xi − xj

− πj

n + 1
i �= j

%i
ii = πi

ii − 2
πj

n + 1
.

Compare the coefficients and recall the elementary fact that a rational function
∑

j

αj x + βj

x − tj

in x vanishes identically if and only if αj tj + βj = 0 and
∑

j αj = 0. Then we find the
following.

Proposition 2. The system N E(a, b, c) coincides with the system N#E(a, b, c) if and only if

b1 = · · · = bn(= b) −nb + a + c − 1 = 0.

Let us summarize the above computation. We obtained a system E(a, b, c) =
E(a, b1, . . . , bn, c) of rank n+1 on X(2, n+3), which was the pull-back under ι : X(2, n+3) →
X(2, 2n + 4) of the hypergeometric system E2n+1

D (a, b1, . . . , b2n+1, c), with

bn+1 = b1, . . . , b2n = bn b2n+1 = a − c + 1.

The normal forms of E(a, b, c) and its pull-back under # coincide if and only if

b1 = · · · = bn (= b) −(2n + 1)b + a + c − 1.

These conditions lead to

a = (n + 1)b c = nb + 1.

If moreover E is regular along the divisors {xj = 0}, then we have b = 1/(n − 1).

6. The double covering f : X(2, 7) → X(3, 6)

Let X(3, 6) be the configuration space of coloured six points in general position in the projective
plane

X(3, 6) = GL3\{z ∈ M(3, 6)|no 3-minor of z vanishes}/(C×)6.

We define a rational map f from X(2, 7) to X(3, 6). We start from a system of seven points
on the line representing a point of X(2, 7). We regard the line, carrying the seven points, as
a non-singular conic in the plane. The five points represented by the last five points, and the
intersection point of the tangent lines (to the conic) at the first and the second points define a
system of six points on the plane, representing a point of X(3, 6). Let us express this map f

in terms of coordinates. We normalize the system of seven points to be

x = (0, ∞, 1, x1, . . . , x4) ∈ X(2, 7).

If the conic is given by t2
1 − t0t2 = 0 in the plane coordinatized by t0 : t1 : t2, the seven points

are represented by the seven columns

1 0 1 1 1 1 1

0 0 1 x1 x2 x3 x4

0 1 1 x2
1 x2

2 x2
3 x2

4 .
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Since the tangents of the conic at the first two points are t2 = 0 and t0 = 0, the intersection is
given by 0 : 1 : 0; so the point f (x) is represented by




0 1 1 1 1 1

1 1 x1 x2 x3 x4

0 1 x2
1 x2

2 x2
3 x2

4


 ∈ X(3, 6).

Normalizing the above 3 × 6-matrix into



1 0 0 1 1 1

0 1 0 1 z1 z2

0 0 1 1 z3 z4




we can readily show

Proposition 3. The map

f : X(2, 7) � x = (x1, . . . , x4) −→ z = (z1, . . . , z4) ∈ X(3, 6)

defined in this section is given by

z1 = (x3 + x1)(x2 − 1)

(x3 − 1)(x2 + x1)
z2 = (x4 + x1)(x2 − 1)

(x4 − 1)(x2 + x1)

z3 = (x3 + 1)(x2 − x1)

(x3 − x1)(x2 + 1)
z4 = (x4 + 1)(x2 − x1)

(x4 − x1)(x2 + 1)
.

Remark 2.

(a) The Jacobian of f is given by

(x1 − 1)(−x2 + x1)(x2 − x4)(x3 − x4)(x3 − x2)(x1 + 1)3(x2 − 1)

(x3 − x1)2(x2 + 1)3(x4 − 1)2(x2 + x1)3(x3 − 1)2(−x4 + x1)2
.

(b) Put

D1 = z1z4 − z2z3 D2 = z1z4 − z2z3 − z4 + z2 + z3 − z1

Q = −z2z3z1 − z2z3z4 + z2z3 + z1z4z2 + z1z4z3 − z1z4.

Then the singular locus of the system found in [3] is defined by

D =
4∏

j=1

zj (1 − zj ) · (z1 − z2)(z1 − z3)(z2 − z4)(z3 − z4)D1D2Q

and f ∗(D) is given by

−(x3 + x1)(x2 − 1)5(x4 + x1)(x3 + 1)(−x2 + x1)5(x4 + 1)(x1 + 1)13

×(x3 − x2)5(x2 − x4)5(x3 − x4)5(x1 − 1)5(x3 + x2)(x2 + x4)(x3 + x4)

×(x3 − 1)−7(x2 + x1)−11(x4 − 1)−7(x3 − x1)−7(x2 + 1)−11(−x4 + x1)−7.

Proposition 4. The map f is invariant under the involution # : xi → 1/xi . Moreover, f is a
two-to-one map.
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Sketch of the proof. For given (z1, . . . , z4), we solve x1, . . . , x4. We can see that x2 must be
a solution of the quadratic equation

C2Z2 + C1Z + C0 = 0

where

C0 = C2 = −(−z2z4 + z3z2z4 − z3 + z1z3 + z4 − z1z3z4)

×(z3 + z2 − z4 − z1 − z1z3z4 + z1z3z2 − z2z4z1 + z3z2z4 − 2z2z3 + 2z1z4)

C1 = −6z1z3z4 + 4z2
2z4z1 − 4z2

2z1z3 + 4z2
3z2

2z1 + 4z2
4z2

1z2 − 4z2
1z2z4 + 4z2

1z3z2

−2z1z3z2 − 2z2z4z1 − 6z3z2z4 − 6z2z2
4z1z3 + 16z2z4z1z3 − 2z2

1z3z2
4z2

−2z2
3z1z2 − 2z2

1z2
3z2 − 2z2

4z2z1 − 2z2
1z3z4 + 2z2

1z2
3z4 − 2z2

3z2
2z2

4 − 2z3z2
2z4

−2z2
2z2

4z1 + 2z2
2z2

4z3 + 4z2
3z2

2z4 − 2z2
1z2

3z2
4 + 4z2

1z3z2
4 − 2z2

3 − 2z2
4

−4z2
3z2

2 + 2z1z3 − 2z2z3 + 4z4z3 + 4z4z2
1 − 4z2

4z2
1 + 2z2z4 + 4z1z2

4 − 2z1z4

+2z1z2
3 − 2z2

1z3 + 4z2
3z2 − 2z2

2z4 + 2z2z2
4 + 2z2

1z2
3z4z2 + 4z3z2

2 + 2z3z2
2z2

4z1

−2z2
3z2

2z4z1 − 2z2
2z4z1z3 + 4z1z2

3z2
4z2 − 2z2

1z3z2z4 − 6z1z2
3z2z4.

The discriminant of the quadratic equation with respect to Z is given by

16(z1 − 1)(z2 − 1)(z3 − 1)(z4 − 1)(z1 − z2)(z3 − z4)D2Q.

The other quantities x1 and x3 can be expressed as rational functions in x2 and z:

x1 = −x2(−z1z3 + z1z3z2 + z2z4 − z2z4z1 − z2 + z1)/(−z3x2 + z3 + z2 + z4x2

−z4 − z1 − z1z3z4 − z1z3z4x2 + z1z3z2 − z2z4z1 + z3z2z4x2 + z3z2z4

+x2z1z3 − 2z2z3 − x2z2z4 + 2z1z4)

x3 = −x2(1 − 2z1 + z1z3 − x2 + x2z1z3)(z3 + z2 − z4 − z1 − z1z3z4 + z1z3z2

−z2z4z1 + z3z2z4 − 2z2z3 + 2z1z4)/(2x2z2
3z1z4 + z3 + z2 − z4 − z1

−6z1z3z4 + 2z1z3z2 − z2z4z1 + z3z2z4 + 2z2z4z1z3 − 4z2
3z1z2

+z2
1z2

3z2 + 2z2
1z3z4 − z2

1z2
3z4 − 2z2

3 + 2z1z3 − 4z2z3 + 2z4z3

+2z1z4 + z1z2
3 − z2

1z3 + 4z2
3z2 − z2

1z3z2z4 + z1z2
3z2z4

−2x2z2
3z2z4 − 2x2z2

1 − 2x2z2
1z3z2 + 2x2z2

3 + 3x2z2
1z3 − x2z2

+x2z1 − 3x2z2z4z1 + x2z1z2
3z2z4 − 2x2z4z3 − 2z2

3z2z

+2z1z2
3z4 − z3x2 + z4x2 + 2x2z1z2 + 2x2z2

1z2z4 + 3z3z2z4x2

−x2z2
1z3z2z4 − x2z2

1z2
3z4 − 3x2z1z2

3 + x2z2
1z2

3z2)

and x4 is obtained from the expression of x3 by the exchanges z1 ↔ z2 and z3 ↔ z4. Therefore,
the map f is two-to-one. �
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7. A system on X(3, 6) induced by E invariant under #

We now have the system

E(a, b, c) a = 5b c = 4b + 1 b = b1 = · · · = b4

with a parameter b on X(2, 7) invariant under the involution #. The push-down f∗E(a, b, c)

of this system is a system defined on X(3, 6). Here we confess honestly that we still have not
found a way to express the system f∗E(a, b, c) in z-variables with parameter b in a reasonably
compact form. Nevertheless, when the system E(a, b, c) is non-singular along the divisors
{xj = 0}, that is, when b = 1

3 , we can explicitly find the coefficients of the system f∗E(a, b, c)

and we obtain

Theorem 1. The system E( 5
3 , 1

3 , 7
3 ), as a system on X(3, 6), coincides with the system we found

in [3], which has singularities along the divisor {D = 0}.
Make the coordinate change x → z to transform the system E(a, b, c) into the form
∂2v/∂zi∂zj = · · · and write the coefficients in terms of x. Though it is possible to express
these coefficients in z, it is much easier to rewrite the coefficients of the system in [3] in terms
of x. We then compare the coefficients of the two systems to find that they coincide.
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